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Abstract

In the field of operator algebra, the concept of antieigenvalue theory was first introduced by
Karl Gustafson with a special emphasis on accretive operators. In a wide range of scientific ap-
plications, antieigenvalue naturally occurs. Due to the inclusion of nonlinear Euler equations in
the antieigenvalue theory, computing antieigenvalues is a difficult task as compared to that of
computing eigenvalues of the operator. In the current paper, we consider linear two-parameter
eigenvalue problems (LTEP) and will discuss the abstract algebraic setting of the problem as
proposed by Atkinson. We analyze the generalized antieigenvalue pair and their corresponding
generalized antieigenvectors for LTEP using the consequences of the Cauchy Schwarz inequal-
ity. Some generalized antieigenvalue bounds will also be derived. Generalized antieigenvalues
and their corresponding generalized antieigenvectors will be calculated solving their relevant
optimization problem. For numerical computations, three exampleswill be provided. Real sym-
metricmatrices are used in the first case, while real diagonalmatrices are used in the second case
and finally arbitrary matrices are considered.
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1 Introduction

Let S be an operator defined on the Hilbert Space H equipped with usual inner product ⟨.⟩.
Then S is called an accretive operator if Re ⟨Sz, z⟩ ≥ 0, ∀ z ̸= 0 (Strictly accretive operator if
Re ⟨Sz, z⟩ > 0, ∀ z ̸= 0). For such accretive operators, Karl Gustafson [10], brought into light the
concept of antieigenvalue, during his study of certain problems in perturbation theory related to
semi-group generators. The first antieigenvalue of S is represented by µ1(S) and is defined as,

µ1(S) = min
Sz ̸=0

Re ⟨Sz, z⟩
∥Sz∥ ∥z∥

, (1)

and the corresponding vector z for which infimum of (1) is attained is characterised as antieigen-
vector of S. The quantity µ1(S), also denoted as cos(S) for being the cosine of the angle of the
operator S. Geometrically, µ1(S) is the cosine (real cosine) of largest (real) angle through which
an arbitrary nonzero vector z can be rotated by the action of the operator S. It was first devel-
oped by Gustafson [10, 11] and later by Krein [26] in more independent way. Applications of
antieigenvalues are found in diverse scientific domains. Antieigenvalue appears not only in con-
tinuum mechanics, economics, but also in number theory [15]. The book [14] contains an ex-
tensive overview of the applications of antieigenvalue in operator theory, computational method,
wavelet theory, quantummechanics, as well as in finance and optimization. Theworks reported in
[34, 23] provide the applications of antieigenvalue in statistics and, similarly in the papers [12, 41]
contains the applications of antieigenvalue in economics. In his paper [38], Seddighin presented
antieigenvalue inequalities among trigonometric quantities for multiple operators.

Guo et al. [9] investigated the application of antieigenvalues to spectrum sensing and designed
an antieigenvalue-based detector. For accretive normal operator, Gustafson and Seddighin [16]
derived antieigenvalues bounds and they also developed the theory on total antieigenvectors in
[17]. Moreover, they also analyzed antigenvalues of accretive compact normal operator in [43] that
express the first antieigenvalue and the components of the first antieigenvectors, and developed an
algorithm for computing higher antieigenvalues. An overview of antieigenvalues for Hermitian
positive definite operators have been reported in [27]. Computation aspects of antieigenvalue have
been analyzed in [43], but they are particularly for normal operators. Mirman [27] developed
a method based on Toeplitz-Hausdorff theorem to estimate antieigenvalue of strictly accretive
operator. Paul et al. [32] computed antieigenvalues of bounded linear operators via Centre of
Mass. Seddighin [39] independently developed a method of computation for antieigenvalue of a
strictly accretive operator based on the properties of the numerical range of an operator. He also
approximated several antieigenvalue-type quantities for arbitrary accretive operators in [42].

Estimation of antieigenvalue bound has been found in [11]. It was Gustafon, who introduced
the notion of interaction antieigenvalues in [13], and after that Seddighin [40] introduced joint
antieigenvalues of pairs of operators that belong to the same closed normal subalgebra. Paul in-
troduced antieigenvalue and antieigenvectors of the generalized eigenvalue problem in his paper
[31]. Khattree [22] extended the concept of smallest antieigenvalue of a real symmetric positive
definitematrix to the generalized antieigenvalue of order r, and provided a closed form expression
for the generalized antieigenvalue and generalized antieigenmatrix. Hossein et al. [20] developed
the theory of symmetric anti-eigenvalue and symmetric anti-eigenvector of a bounded linear op-
erator along with their applications in Statistics. Recent work on Lp-antieigenvalue conditions has
been reported in [30] for complex-valued Ornstein-Uhlenbeck operators.

Organization of the paper: Section 2 contains few notation and basic results to be used in this
article. Section 3 contains an abstract setting of LTEP. In Section 4, a general theory of general-
ized antieigenvalue pairs and their corresponding generalized antieigenvectors are presented. In
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Section 5, computational aspects of generalized antieigenvalue pair are discussed with the help of
numerical example. Lastly, in Section 6, a conclusion is presented on the overall works.

2 Notations and Basic Results

The following basic results and notation will be used throughout the paper. The notations R
and C denotes respectively, the set of real numbers and complex numbers. A−1 andAT represents
respectively, the inverse and transpose of the matrix A. The Euclidean norm of A is represented
by ∥A∥ and the standard Kronecker product is denoted by ⊗.
Definition 2.1. [6] Let A ∈ Cm×n and B ∈ Cp×q are any two matrices. Then the Kronecker Product
(.⊗ .) of the matrices A and B is defined as A⊗ B = [aijB] ∈ Cmp×nq , where aij is the ith row and jth

column element of A.

Definition 2.2. [22] The celebrated Cauchy-Schwarz inequality states that for any two vectors p and q,
the following inequality is true,

|(pT q)T |2 ≤ pT p.qT q.

The equality holds if and only if the vectors p and q are proportional to each other.

Definition 2.3. [2] Let H be a Hermitian matrix. Then the matrix H is said to be accretive (or strictly
accretive) according as H is positive semi-definite (or positive definite).

Lemma 2.1. (Lemma 1, [21]) Consider 0 < a1 < . . . < a4 and let aij and bij be the arithmetic and
geometric means of ai and aj . Then

a14
b14

≥ a23
b23

.

Lemma 2.2. [8] Let A be any matrix of order n× n, then ∂

∂x
(xTAx) = (A+ AT )x. If A is symmetric,

then ∂xTAx

∂x
= 2Ax.

3 General Theory of LTEP

Consider the LTEP given below,
L1(λ, µ)x1 : = (T1 − λB11 − µB12)x1 = 0,

L2(λ, µ)x2 : = (T2 − λB21 − µB22)x2 = 0,
(2)

where λ, µ ∈ C; xi ∈ Cni ; and Ti, Bij ∈ Cni×ni ; i, j = 1, 2. If for some λ, µ, there exists 0 ̸=
xi; i = 1, 2 such that they satisfy the system (2), then the pair (λ, µ) is termed as eigenvalue and
its associated tensor product x1 ⊗ x2 is termed as the eigenvector (right). Similarly, for i = 1, 2,
a tensor product v = v1 ⊗ v2 is called a left eigenvector if vi ̸= 0 and v∗i Li(λ, µ) = 0. It is worth-
mentioning that eigenvalue problems have received a lot of attention by the researchers in the
recent times [29, 28]. The LTEP arises most often in many practical applications, such as in mod-
eling of stochastic games [5], in dynamic model updating problem [4] and in other applications
reported in [46].

The literature on abstract algebraic setting of multiparameter problem (LTEP is a special case)
is available in the works of Atkinson [1], where he established the relationship between multipa-
rameter problem with a system of joint generalized eigenvalue problems (GEP) in tensor product
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space. Volkmer [44] developed the spectral theory ofmultiparanmeter system based on theworks
of [1]. Hochstenbach and Plestenjak [19] analyzed the backward error, condition numbers, and
pseudo-spectrum of multiparameter system and given the basis for the second root subspace of
simple eigenvalue of the problem. Kosir [24] presented a completeness theorem for nonderoga-
tory eigenvalues of multiparameter systems in finite-dimensional case. Kosir and Plestenjak [25],
provided a comprehensive overview on singular LTEP.

For computation of eigenvalue of LTEP, Cock and Moor [5] developed a unifying frame-
work, where they exploit the properties of block shift-invariant subspaces and also used multi-
dimensional realization algorithms. Ringh and Jarlebring [35] used a nonlinearization technique
to address a LTEP. Ruymbeek et al. [37] presented a subspacemethod for multiparameter system
based on tensor-train representations. Rodriguez et al. [36] developed a Fiber product homotopy
method for multiparameter system and also analyzed the sensitivity of the problem. The Multi-
ParEig [33] package available in MATLAB is widely used toolbox for solving LTEP. Numerical
method presented in [7] using alternating method is more recent in literature. Two algorithms
developed by Vermeersch andMoor in [45], based on block Macaulay matrix to solve rectangular
multiparsameter system can also be used to solve LTEP when the coefficient matrices are rectan-
gular.

The intensive study presented by Hochstenbach et al. [18] can be used a ready reckoner to ad-
dress rectangular case, where they solved numerically the rectangularmultiparameter system by a
transformating into a usual Multiparameter problem. They applied these techniques to calculate
the optimal least squares autoregressive moving average (ARMA) model and the optimal least
squares realization of autonomous linear time-invariant (LTI) dynamical system. The de-facto
method for the spectral analysis of LTEP is by transforming the problem into a certain commut-
ing tuple of operators matrices defined in (3) and (4),

∆0 = B11 ⊗B22 −B12 ⊗B21, (3)
∆1 = T1 ⊗B22 −B12 ⊗ T2,

∆2 := B11 ⊗ T2 − T1 ⊗B21.
(4)

The problem is called nonsingular, when∆0 defined in (3) is nonsingular, otherwise the problem
is called singular. For spectral analysis the LTEP the nonsingular case is usually considered by the
authors. It is well known that, a nonsingular LTEP defined in (2) can be transformed into a pair
of joint GEP [1] of the form given below,

∆1x = λ∆0x,

∆2x = µ∆0x.
(5)

Denote,

Γi = ∆−1
0 ∆i, i = 1, 2. (6)

For nonsingular LTEP the matrices Γi commute and eigenvalues of (2) and (5) coincides. A LTEP

is referred as Hermitian, if all the matrices present in the system of (2) are Hermitian. Such a
Hermitian LTEP is termed as Right definite if,∣∣∣∣ x∗

1B11x1 x∗
1B12x1

x∗
2B21x2 x∗

2B22x2

∣∣∣∣ ≥ α, (7)

for some scalar α > 0 and ∥xi∥ = 1 ∀ xi ∈ Hi, i = 1, 2. On the other hand, it is proved in [1]
that Right definiteness condition implies that the determinantal operator ∆0 is positive definite.
Set N = n1.n2. If LTEP is Right definite, then there exist N number of linearly independent
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eigenvectors and all the eigenvalues λ, µ ∈ R. Furthermore, if all the matrices present in the
system of (2) of the Right definite problem are real, then real eigenvectors can be selected. Again,
the associated left and right eigenvectors are same for real geometrically simple eigenvalue of a
Hermitian LTEP. For decomposable tensor x = x1 ⊗ x2, it follows that,

∆0x = (B11x1 ⊗B22x2)− (B12x1 ⊗B21x2), (8)
∆1x = (T1x1 ⊗B22x2)− (B12x1 ⊗ T2x2), (9)
∆2x = (B11x1 ⊗ T2x2)− (T1x1 ⊗B21x2). (10)

4 Generalized Antieigenvalue and Antieigenvectors of LTEP

Unless sated, otherwise the LTEP is considered as Right definite and the operator matrices∆i

are positive definite, ∀ i = 1, 2. Then the operator matrices∆i are also nonsingular for ∀ i = 0, 1, 2.
The parameters ν(Γi), i = 1, 2 is defined in [2] for the joint GEPs of the form (5) by extending the
idea of [31] as follows,

ν(Γi) = min

{
Re ⟨∆ix,∆0x⟩
∥∆ix∥ ∥∆0x∥

: x ∈ H, ∆ix ̸= 0, ∆0x ̸= 0

}
. (11)

The problem is to find the pair (ν(Γ1), ν(Γ2)) for the system (5) and is called generalized antieigen-
value pair. Generalised antieigenvectors corresponding to the pair (ν(Γ1), ν(Γ2)) are vectors x for
which the minimum of (11) are obtained. The standard results of generalized antieigenvalue pair
of LTEP are reported in [2] and computation for right definite case are reported in [3]. For inner
products ⟨∆ix,∆0x⟩ involved in (11), the following representation are also possible,

⟨∆ix,∆0x⟩ =
〈
∆i∆

−1
0 y, y

〉
; i = 1, 2,

where ∆0x = y. Denote,

Gi = ∆i∆
−1
0 , i = 1, 2. (12)

Then, the parameter ν(Γi) defined in (11) reduces to,

ν(Γi) = min

{
Re ⟨Giy, y⟩
∥Giy∥ ∥y∥

: y ∈ H, Giy ̸= 0, y ̸= 0

}
, (13)

ν(Γi) = min
0 ̸=y∈H,Giy ̸=0

{
Re ⟨Giy, y⟩
∥Giy∥ ∥y∥

}
. (14)

As per our assumptions of (2) the matrices present in the system of (2) are of dimension N , and
therefore the order of ∆i becomes N × N . The increase in the size of the structure of ∆i makes
it computationally challenging to analyze and calculate the pairs (ν(Γ1), ν(Γ2)) if the matrices are
of higher dimension. Again, Gustafson proved that for any accretive operator K, the following
equality holds,

sinK =
√
1− cos2 K = inf

ϵ>0
∥ϵK − I∥ . (15)

Lemma 4.1. Let ∆0x be as given in (8) and x = x1 ⊗ x2, then,

∥∆0x∥ ≤ ∥B11∥ ∥x1∥+ ∥B22∥ ∥x2∥+ ∥B12∥ ∥x1∥+ ∥B21∥ ∥x2∥ .
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Proof. Taking norm on both sides of (8) we have,

∥∆0x∥ = ∥(B11x1 ⊗B22x2)− (B12x1 ⊗B21)x2∥
≤ ∥B11x1 ⊗B22x2∥+ ∥B12x1 ⊗B21x2∥
≤ ∥B11x1∥+ ∥B22x2∥+ ∥B12x1∥+ ∥B21x2∥
≤ ∥B11∥ ∥x1∥+ ∥B22∥ ∥x2∥+ ∥B12∥ ∥x1∥+ ∥B21∥ ∥x2∥ ,

which proves the lemma.
Theorem 4.1. Let Gi; i = 1, 2 be as defined in (12). Then,

sin(G1) ≤
∥∥∆−1

0

∥∥ [ sin(T1) ∥B22∥+ sin(T2) ∥B12∥+ sin(B11) ∥B22∥+ sin(B12) ∥B21∥
]
,

sin(G2) ≤
∥∥∆−1

0

∥∥ [ sin(B11) ∥T2∥+ sin(T1) ∥B21∥+ sin(B11) ∥B22∥+ sin(B12) ∥B21∥
]
.

Proof. It is well known that,

inf(an.bn) ≤ sup(an). inf(bn). (16)

We have,

∥ϵG1 − I∥
=
∥∥ϵ∆1∆

−1
0 − I

∥∥
=
∥∥ϵ∆1∆

−1
0 −∆0∆

−1
0

∥∥
=
∥∥(ϵ∆1 −∆0)∆

−1
0

∥∥
≤
∥∥∆−1

0

∥∥ ∥ϵ∆1 −∆0∥
=
∥∥∆−1

0

∥∥ ∥ϵT1 ⊗B22 − ϵT2 ⊗B12 −B11 ⊗B22 +B12 ⊗B21∥
=
∥∥∆−1

0

∥∥ ||(ϵT1 − I)⊗B22 − (ϵT2 − I)⊗B12 + I ⊗B22 −B11 ⊗B22 − I ⊗B12 +B12 ⊗B21||
=
∥∥∆−1

0

∥∥ ||(ϵT1 − I)⊗B22 − (ϵT2 − I)⊗B12 + (I −B11)⊗B22 − (I −B12)⊗B21||

≤
∥∥∆−1

0

∥∥ [ ∥(ϵT1 − I)⊗B22∥+ ∥(ϵT2 − I)⊗B12∥+ ∥(I −B11)⊗B22∥+ ∥(I −B12)⊗B21∥
]

=
∥∥∆−1

0

∥∥ [ ∥(ϵT1 − I)∥ ∥B22∥+ ∥(ϵT2 − I)∥ ∥B12∥+ ∥(I −B11)∥ ∥B22∥+ ∥(I −B12)∥ ∥B21∥
]
.

Taking infrimum on both sides when ϵ > 0 we have,

=⇒ inf
ϵ>0

∥ϵG1 − I∥ ≤ sup
ϵ>0

∥∥∆−1
0

∥∥ [ inf
ϵ>0

∥(ϵT1 − I)∥ ∥B22∥+ ∥(ϵT2 − I)∥ ∥B12∥+ ∥(I −B11)∥ ∥B22∥

+ ∥(I −B12)∥ ∥B21∥
]

=sup
ϵ>0

∥∥∆−1
0

∥∥ [inf
ϵ>0

(∥(ϵT1 − I)∥ ∥B22∥) + inf
ϵ>0

(∥(ϵT2 − I)∥ ∥B12∥)

+ inf
ϵ>0

(∥(I −B11)∥ ∥B22∥) + inf
ϵ>0

(∥(I −B12)∥ ∥B21∥)]

≤ sup
ϵ>0

∥∥∆−1
0

∥∥ [ sin(T1) sup
ϵ>0

∥B22∥+ sin(T2) sup
ϵ>0

∥B12∥+ sin(B11) sup
ϵ>0

∥B22∥

+ sin(B12) sup
ϵ>0

∥B21∥
]
,

=⇒ sin(G1) ≤
∥∥∆−1

0

∥∥ [ sin(T1) ∥B22∥+ sin(T2) ∥B12∥+ sin(B11) ∥B22∥+ sin(B12) ∥B21∥
]
.
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Also,
∥ϵG2 − I∥

=
∥∥ϵ∆2∆

−1
0 − I

∥∥
=
∥∥ϵ∆2∆

−1
0 −∆−1

0 ∆0

∥∥
=
∥∥∆−1

0 (ϵ∆2 −∆0)
∥∥

≤
∥∥∆−1

0

∥∥ ∥ϵ∆2 −∆0∥
=
∥∥∆−1

0

∥∥ ∥ϵB11 ⊗ T2 − ϵT1 ⊗B21 −B11 ⊗B22 +B12 ⊗B21∥
=
∥∥∆−1

0

∥∥ ||B11 ⊗ (ϵT2 − I)− (ϵT1 − I)⊗B21 +B11 ⊗ I − I ⊗B21 −B11 ⊗B22 +B12 ⊗B21||
=
∥∥∆−1

0

∥∥ ||B11 ⊗ (ϵT2 − I)− (ϵT1 − I)⊗B21 −B11 ⊗ (B22 − I) + (B12 − I)⊗B21||

≤
∥∥∆−1

0

∥∥ [ ∥B11 ⊗ (ϵT2 − I)∥+ ∥(ϵT1 − I)⊗B21∥+ ∥B11 ⊗ (B22 − I)∥+ ∥(B12 − I)⊗B21∥
]

=
∥∥∆−1

0

∥∥ [ ∥B11∥ ∥(ϵT2 − I)∥+ ∥(ϵT1 − I)∥ ∥B21∥+ ∥B11∥ ∥(B22 − I)∥+ ∥(B12 − I)∥ ∥B21∥
]
.

Taking infrimum on both sides when ϵ > 0 we have,

inf
ϵ>0

∥ϵG2 − I∥ ≤ sup
ϵ>0

∥∥∆−1
0

∥∥ inf
ϵ>0

[
∥B11∥ ∥(ϵT2 − I)∥+ ∥(ϵT1 − I)∥ ∥B21∥+ ∥B11∥ ∥(B22 − I)∥

+ ∥(B12 − I)∥ ∥B21∥
]

=sup
ϵ>0

∥∥∆−1
0

∥∥ [ inf
ϵ>0

(∥B11∥ ∥(ϵT2 − I)∥) + inf
ϵ>0

(∥(ϵT1 − I)∥ ∥B21∥)

+ inf
ϵ>0

∥B11∥ (∥(B22 − I)∥+ ∥(B12 − I)∥ ∥B21∥)
]
,

=⇒ sin(G2) ≤
∥∥∆−1

0

∥∥ [ ∥B11∥ sin(T2) + sin(T1) ∥B21∥+ ∥B11∥ sin(B22) + sin(B12) ∥B21∥
]
.

Theorem 4.2. Let ν(Γi); i = 1, 2 be as given in (14), then,

ν(Γi) ≤ sup
∥y∥=1

Re ⟨Giy, y⟩. inf
1

∥Gi∥
.

Proof. Recall (16) and using it in the expansion of ν(Γi), we have,

ν(Γi) = inf
∥y∥=1

Re ⟨Giy, y⟩
∥Giy∥ ∥y∥

≤ sup
∥y∥=1

Re ⟨Giy, y⟩. inf
∥y∥=1

1

∥Giy∥

≤ sup
∥y∥=1

Re ⟨Giy, y⟩. inf
∥y∥=1

1

∥Gi∥

= sup
∥y∥=1

yTGiy. inf
1

∥Gi∥
.

(17)

5 Calculation of ν(Γi)

Here we adopt a direct procedure to compute the generalized antieigenvalue pair as well as its
corresponding generalized antieigenvectors defined in (11). For i = 1, 2, the matrices Gi are real,
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symmetric, and positive definite. So, immediate consequences of the Cauchy Schwarz inequality
for Gi are given by,

(yTGiy)
2 ≤ yTG2

i y.y
T y.

The equality holds if and only if Giy is proportional to y. Thus, for 0 ̸= y we have,

yTGiy√
yTG2

i y.y
T y

≤ 1.

In other words, this can be restated as the optimization problems,

max
y ̸=0

yTGiy√
yTG2

i y.y
T y

,

have their optimal value 1 and the solutions to the above optimization problems are given by the
set of all eigenvectors of the matrices Gi. Moreover, the corresponding minimization problems,

min
y ̸=0

yTGiy√
yTG2

i y.y
T y

,

yield a lower bound on yTGiy√
yTG2

i y.y
T y

. Inspired by this work, the pairs of generalized antiegen-
values and their corresponding generalized antieigenvectors of Gi can be obtained as the general
solutions of their associated optimization problems,

ν(Γi) = min
y ̸=0

yTGiy√
yTG2

i y.y
T y

.

Let us consider, the optimization problems with the following functions,

h(y) =
yTGiy√

yTG2
i y.y

T y
. (18)

The problems are to evaluate the stationary values of (18). Taking logarithm on both sides of (18)
yields the equation below,

log[h(y)] = log(yTGiy)−
1

2
log(yTG2

i y)−
1

2
log(yT y). (19)

Taking matrix derivative on both sides of (19) with respect to y we get,

1

h(y)

∂h(y)

∂y
=

1

yTGiy

∂(yTGiy)

∂y
− 1

2

∂(yTG2
i y)

∂y
− 1

2

1

yT y

∂(yT y)

∂y
,

=⇒ ∂h(y)

∂y
= h(y)

[
1

yTGiy

∂(yTGiy)

∂y
− 1

2

1

yTG2
i y

∂(yTG2
i y)

∂y
− 1

2

1

yT y

∂(yT y)

∂y

]
.

Since each Gi, i = 1, 2 is symmetric and therefore by Lemma 2.2 we have,
∂h(y)

∂y
= h(y)

[
1

yTGiy
2Giy −

1

2yTG2
i y

2G2
i y −

1

2yT y
2y

]
.

After equating to zero, resulting equation of matrix derivative of h(y) for i = 1w.r.t. y becomes,
1

yTG1y
2G1y −

1

yTG2
1y

G2
1y −

1

yT y
= 0. (20)
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Pre-multiplying both sides of (20) by yTG1y we have,

yTG1y

yTG2
1y

.G2
1y +

yTG1y

yT y
.y = 2G1y. (21)

Then, an orthogonal matrix P and a diagonal matrix D exist such that G1 = PDPT , where D =
dia(λ1, λ2, . . . , λk). Define z = PT y, then (18) reduces to,

h(z) =
zTDz√
z′D2z.z′z

, (22)

and (21) can be expressed as,

γ1G
2
1Pz + γ2Pz = 2G1Pz,

γ1z
TPTG2

1Pz = zTPTG1Pz,
(23)

or
2Dz = γ1D

2z + γ2z,

zTDz = γ1z
TD2z.

(24)

There are p individual ways to write the matrix (24) as follows:

2λizi = (γ1λ
2
i + γ2)zi; i := 1 : p. (25)

The following two cases can be considered when solving (24) and (25),

Case 1: The vector z = ei, where ei is the ith column of identity matrix of order p, is a solution
of the equations (24) because,

2Dei = γ1D
2ei + γ2ei,

eTi Dei = γ1e
′

iD
2ei,

(26)

with γ1 = λ−1
i and γ2 = λi. As a result, the stationary value h(ei) = 1, which corre-

sponds to the maximum value of h(y). In this situation, the eigenvectors are undoubt-
edly the choice of vectors that maximise h(y).

Case 2: The vectors of the form z = diei + djej ; di ̸= 0, dj ̸= 0 are potential candidates. After
replacing z in (24) with this selection, we get,

2λi = γ1λ
2
i + γ2,

2λj = γ1λ
2
j + γ2,

(27)

with choice λi ̸= λj . This results in γ1 = 2(λi + λj)
−1 and γ2 = 2λiλj(λi + λj)

−1.

However, it is observed that γ2
γ1

=
zTD2z

zT z
and thus a solution of the form z = diei + djej will

exist only if λ2
i <

γ2
γ1

< λ2
j ; j > i. Furthermore, in this instance, the equation specified in (24)

necessitates that, (
di
dj

)2

=
λj

λi
. (28)
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The corresponding stationary values are equal to,
√
γ1γ2 =

2
√
λiλj

λi + λj
. (29)

Thus, using (28), we have√λjei±
√
λiej , λi ̸= λj as the solutions to (24). Obviously, any solution

to (25) will fall into two categories, either in Case 1 or in Case 2. Thus, all potential options of the
generalized antieigenvectors and the corresponding generalized antieigenvalues can be listed as
those given by Case 2, written as a set,

R =
{√

λjei +
√

λiej , λi ̸= λj , i, j = 1 : p
}
.

This list might be quite lengthy. But it follows from the previous Lemma 2.1 that 2
√
λ1λp

λ1 + λp
is the

first generalized antieigenvalue with corresponding vectors z1 and z2 as (√λ1, 0, . . . , 0,±
√

λp)
T

and corresponding generalized antieigenvectors as y1 = Pz1 and y2 = Pz2. It is to be noted that
these vectors are not mutually orthogonal, unless λ1 = λp.

By inserting the corresponding nonzero entries in the appropriate locations, pairs that are sim-
ilar to z1 and z2 can be obtained if either λ1 and λp has repeating roots. Proceeding in this way,
and using the Lemma 2.1 and the fact that for every z, there will be precisely two nonzero compo-
nents and assuming that λ1 and λp are not occur repeatedly as a roots of (18), the next generalized
antieigenvector which is orthogonal to z1 and z2 becomes,(

0,
√
λ2, 0, . . . . . . , 0,±

√
λp−1, 0

)T
,

λ1 ̸= λ2, λp−1 ̸= λp, λ2 ̸= λp−1.

Thus, the next generalized antieigenvalue will be min
(
2
√
λ2λp−1

λ2 + λp−1
, 1

)
. If it is 1, then all sub-

sequent antieigenvalues will be 1, since this is the maximum of (18) can attain, otherwise, the
process keeps on the same manner. Evidently, repeated eigenvalues could result in generalized
antieigenvectors that are non-orthogonal and relate to the same generalized antieigenvalue.

In a similar manner, considering i = 2 in (18), the generalized antieigenvalue ν(Γ2) can be
calculated.
Example 5.1. Consider the LTEP represented by (30) and (31) with real symmetric matrices:

L1(λ, µ)x1 :=

[(
1 0
0 1

)
− λ

(
8 2
2 9

)
− µ

(
1 5
5 2

) ]
x1 = 0, (30)

L2(λ, µ)x2 :=

[(
1 0
0 1

)
− λ

(
1 0
0 1

)
− µ

(
6 −1
−1 7

) ]
x2 = 0. (31)

Then, the associated operator matrices are,

∆0 =


47 −8 7 −2
−8 55 −2 9
7 −2 52 −9
−2 9 −9 61

 , ∆1 =


5 −1 −5 0
−1 6 0 −5
−5 0 4 −1
0 −5 −1 5

 , ∆2 =


7 0 2 0
0 7 0 2
2 0 8 0
0 2 0 8

 ,

G1 =


0.1225 −0.0025 −0.1149 −0.0126
−0.0025 0.1250 −0.0126 −0.1023
−0.1226 −0.0137 0.0921 −0.0048
−0.0137 −0.1089 −0.0048 0.0969

 , G2 =


0.1499 0.0218 0.0199 0.0046
0.0218 0.1281 0.0046 0.0153
0.0213 0.0050 0.1551 0.0228
0.0050 0.0163 0.0228 0.1323

 .
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Table 1: Eigenvalue and eigenvectors of real symmetric matrices of Example 5.1.

λ µ (λ, µ) Eigenvectors
−0.0228 +0.1900 (+0.2288,+0.1900)

(
−0.5731 −0.3542 −0.6286 −0.3885

)T
+0.0148 +0.1035 (+0.0148,+0.1293)

(
−0.3515 +0.5687 −0.3909 +0.6326

)T
+0.2329 +0.1293 (+0.2329,+0.1425)

(
−0.6471 −0.3999 +0.5522 +0.3413

)T
+0.2116 +0.1425 (+0.2116,+0.1035)

(
+0.4013 −0.6493 −0.3397 +0.5496

)T
Eigenvalues and eigenpairs of real symmetric matrices are presented in Table 1. The first generalized

antieigenvalue pair is (0.1047i, 0.9556) with corresponding antieigenvectors are,(√
0.2329e1 ± i

√
0.0228e4

)
;

(√
0.1900e1 ±

√
0.1035e4

)
.

The second generalized antieigenvalue pair is (0.4944, 0.9989) with corresponding antieigenvectors are,(√
0.2116e2 ± i

√
0.0148e3

)
;

(√
0.1425e2 ±

√
0.1293e3

)
.

Example 5.2. Consider the following LTEP defined in (32) and (33) with real diagonal matrices.

L1(λ, µ)x1 :=

[(
9 0
0 10

)
− λ

(
6 0
0 7

)
− µ

(
−5 0
0 −3

) ]
x1 = 0, (32)

L2(λ, µ)x2 :=

[(
2 0
0 2

)
− λ

(
3 0
0 4

)
− µ

(
4 0
0 5

) ]
x2 = 0, (33)

∆0 =


39 0 0 0
0 50 0 0
0 0 37 0
0 0 0 47

 , ∆1 =


46 0 0 0
0 55 0 0
0 0 46 0
0 0 0 56

 , ∆2 =


−15 0 0 0
0 −24 0 0
0 0 −16 0
0 0 0 −26

 ,

G1 =


1.1795 0 0 0

0 1.1000 0 0
0 0 1.2432 0
0 0 0 1.1915

 , G2 =


−0.3846 0 0 0

0 −0.4800 0 0
0 0 −0.4324 0
0 0 0 −0.5532

 .

Table 2: Eigenvalue and eigenvectors of real diagonal matrices of Example 5.2.

λ µ (λ, µ) Eigenvectors
+1.1000 −0.5532 (+1.1795,−0.3846)

(
1 0 0 0

)T
+1.1795 −0.4800 (+1.1000,−0.4800)

(
0 1 0 0

)T
+1.1915 −0.4324 (+1.2432,−0.4324)

(
0 0 1 0

)T
+1.2432 −0.3846 (+1.1915,−0.5532)

(
0 0 0 1

)T
Eigenvalues of LTEP with diagonal matrices are presented in Table 2. The first generalized antieigen-

value pair is (0.9981,−2.0653) with corresponding antieigenvectors are,{√
1.2432e1 ±

√
1.1000e4; i

√
0.3846e1 ± i

√
0.5532e4

}
.

The second generalized antieigenvalue pair is (1,−0.0692) with corresponding antieigenvectors are,{√
1.1915e2 ±

√
1.1795e4; i

√
0.4800e2 ± i

√
0.4324e4

}
.
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Example 5.3. Consider the following two-parameter problem defined in (34) and (35) with real positive
definite matrices:

L1(λ, µ)x1 :=

 10 5 2
5 3 2
2 2 3

 − λ

 2 −1 0
−1 5 −1
0 −1 7

 − µ

 20 4 5
4 2 3
5 3 5

 x1 = 0, (34)

L2(λ, µ)x2 :=

 −1 2 3
2 5 −3
3 −3 2

 − λ

 9 2 3
2 −1 8
3 −8 0

 − µ

 12 4 3
4 2 −1
3 −1 7

 x2 = 0, (35)

∆0 =



−156 −32 −54 −48 −12 −15 −45 −10 −15
−32 24 −162 −12 2 −31 −10 5 −40
−54 158 14 −15 33 −7 −15 40 0
−48 −12 −15 42 16 9 −39 −10 −12
−12 2 −31 16 12 −21 −10 1 −23
−15 33 −7 9 11 35 −12 25 −7
−45 −10 −15 −39 −10 −12 39 18 6
−10 5 −40 −10 1 −23 18 19 −47
−15 40 0 −12 25 −7 6 33 49


,

∆1 =



140 0 −30 64 12 3 29 −2 −9
0 −80 50 12 −10 7 −2 −21 13

−30 50 30 3 7 27 −9 13 4
64 12 3 38 3 27 2 −3
12 −10 7 8 −4 3 2 −11 7
3 7 27 3 3 17 −3 7 8
29 −2 −9 27 2 −3 41 2 −6
−2 −21 13 2 −11 7 2 −19 12
−9 13 4 −3 7 8 −6 12 11


,

∆2 =



−92 −16 −24 −44 −12 −18 −18 −4 −6
−16 20 −86 −12 0 −37 −4 2 −16
−24 74 4 −18 43 −2 −6 16 0
−44 −12 −18 −32 4 6 −17 −6 −9
−12 0 −37 4 28 −39 −6 −3 −13
−18 43 −2 6 9 10 −9 19 −2
−18 −4 −6 −17 −6 −9 −34 8 12
−4 2 −16 −6 −3 −13 8 38 −45
−6 16 0 −9 19 −2 12 3 14


,

G1 =



−1.0089 0.4512 −0.2460 0.3399 0.1308 −0.0240 −0.0266 −0.0163 0.0047
0.1499 −0.4663 −0.3936 0.0388 0.5693 0.0106 0.1378 −0.2110 −0.0105
−0.0809 −0.0274 0.3814 0.7115 −1.3370 0.0326 0.0456 0.3502 −0.0838
−0.7480 0.2079 0.0707 0.8193 −0.6685 −0.3717 0.3291 0.2699 −0.0681
−0.1436 0.0899 0.0126 0.3574 −0.5502 −0.3183 0.0455 −0.0098 −0.0588
0.0298 −0.1799 −0.0146 −0.1344 0.1455 0.3788 −0.0254 −0.1110 0.0117
−0.7567 0.1748 0.0815 0.6452 0.4120 −0.1112 1.2440 −0.4410 −0.4513
−0.0757 0.0392 0.0142 0.0618 0.2002 −0.0797 0.4565 −0.7123 −0.3877
0.0760 −0.0153 −0.0145 0.1718 −0.6236 0.0493 −0.2769 0.3685 0.3790


,
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G2 =



0.6085 0.0813 0.0961 0.7037 −2.2361 −0.9162 −0.5255 1.3093 0.4423
−0.2581 1.2213 0.3251 4.5357 −10.8647 −4.1632 −2.6485 6.1067 2.1896
1.9622 −4.3897 −1.1163 −28.9517 68.3516 23.3954 15.4873 −37.3789 −12.3970
1.5924 −2.5304 −0.9610 −17.0857 39.4291 13.7966 8.7621 −21.6388 −7.2960
1.0149 −2.1849 −0.7883 −14.6185 35.5247 11.3870 7.7640 −18.8263 −6.0252
−0.3488 0.7440 0.4486 4.9951 −11.5766 −3.6175 −2.6395 6.3864 2.1813
−0.2273 1.8691 0.4890 12.6307 −31.4740 −10.6568 −8.3637 17.7151 6.5146
−0.6414 1.6867 0.5035 12.9688 −31.3651 −10.2941 −7.7666 18.7697 6.1998
0.9540 −2.4356 −0.7718 −16.4004 39.1445 13.2599 9.3083 −21.6918 −7.1049


.

Table 3: Eigenvalue pair of Example 5.3.

λ µ (λ, µ)

+1.5698 +20.1443 (+1.5698,+20.1443)

−1.0487 −3.5247 (−1.0487,−3.5247)

−0.5476 −1.3883 (−0.5476,−1.3883)

−0.5476 +1.3189 (−0.5476,+1.3189)

+0.2605 +0.3530 + 0.1238i (+0.2605, 0.3530 + 0.1238i)

+0.1893 +0.3530− 0.1238i (+0.1893, 0.3530− 0.1238i)

−0.1609 + 0.1653i +0.2545 (−0.1609 + 0.1653i,+0.2545)

−0.1609− 0.1653i +0.5827 (−0.1609− 0.1653i,+0.5827)

−0.1705 +0.7430 (−0.1705,+0.7430)

Eigenvalue pairs of the LTEP in Example 5.3 are shown in Table 3.

• The first generalised antieigenvalue pair is (+4.9244i,+1.0140i) with corresponding antieigenvec-
tors (

√
1.5698 e1 ± i

√
1.0487 e9;

√
20.1443 e1 ± i

√
3.5247 e9).

• The second generalised antieigenvalue pair is (−78.9353i,−38.9958i)with corresponding antieigen-
vectors (

√
0.5339 e2 ± i

√
0.5476 e8;

√
1.3189 e2 ± i

√
1.3883 e8).

• The third generalised antieigenvalue pair is (+4.6833i,+0.8719) with corresponding antieigenvec-
tors (

√
0.2605 e3 ± i

√
0.1705 e7;

√
0.7430 e3 ±

√
0.2545 e7).

• The fourth generalised antieigenvalue pair is (2.4266−0.5664 i, 0.9886+ i 0.0367)with correspond-
ing antieigenvectors

(√
−0.1609 + i 0.1653 e4 ±

√
0.1893 e6;

√
0.5827 e4 ±

√
0.3530 + i 0.1238 e6

)
.

• The fifth generalised antieigenvalue pair is (2.4266+i 0.5664, 0.9886−i 0.0367)with corresponding
antieigenvectors (

√
−0.1609− i 0.1653 e4 ±

√
0.1893 e5;

√
0.5827 e4 ±

√
0.3530− i 0.1238 e5).

All calculations are performed in the environmentMATLABR2019awithWindows 11 operat-
ing system, AMDRyzen 5 5500U 2.10 GHz processor and using the packageMultiParEig available
in [33]. Randomly generated matrices of order n can be considered by using the MATLAB com-
mand randn(n). However, the dimension of the associated joint GEP of the LTEP of coefficient
matrices of order n increases to n2. Therefore, the computation of generalised antieigenvalue pair
will be complex tasks for large order matrices. The generalized antieigenvalue pairs can also be
computed by solving the optimization problems generated from (11) directly. To solve the opti-
mization problem, the quantity xT∆T

i ∆0x appears explicitly for i := 1, 2. These can further be
spitted to get new expressions involving Kronecker product of coefficient matrices of LTEP are
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are given by,

∆T
1 ∆0 =(T1 ⊗B22 −B12 ⊗ T2)

T (B11 ⊗B22 −B12 ⊗B21)

=(TT
1 ⊗BT

22 −BT
12 ⊗ TT

2 )(B11 ⊗B22)− (TT
1 ⊗BT

22 −BT
12 ⊗ TT

2 )(B12 ⊗B21)

=(TT
1 ⊗BT

22)(B11 ⊗B22)− (BT
12 ⊗ TT

2 )(B11 ⊗B22)− (TT
1 ⊗BT

22)(B12 ⊗B21)

+ (BT
12 ⊗ TT

2 )(B12 ⊗B21)

=(TT
1 B11 ⊗BT

22B22)− (BT
12B11 ⊗ TT

2 B22)− (TT
1 B12 ⊗BT

22B21) + (BT
12B12 ⊗ TT

2 B21),

(36)
which implies,

xT∆T
1 ∆0x =(xT

1 T
T
1 B11x1)(x

T
2 B

T
22B22x2)− (xT

1 B
T
12B11x1)(x

T
2 T

T
2 B22x2)

− (xT
1 T

T
1 B12x1)(x

T
2 B

T
22B21x2) + (xT

1 B
T
12B12x1)(x

T
2 T

T
2 B21x2).

(37)

Similar expressions for xT∆T
2 ∆0x, xT∆T

1 ∆1x and xT∆T
0 ∆0x can also be derived. Using these

values, we may arrive to the following remark.
Remark 5.1. The generalized antieigenvalue pairs and the corresponding generalized antieigenvectors of
LTEP are the solution of the optimization problems with the following functions,

xT∆T
i ∆0x√

xT∆T
i ∆ix.xT∆T

0 ∆0x
; i = 1, 2. (38)

6 Conclusion

We discussed the abstract algebraic setting of LTEP and their generalized antieigenvalue the-
ory. We computed generalized antieigenvalue pair of Right definite LTEP by solving the relevant
optimization problems. To find generalised antieigenvalue pair from (11) is computationally chal-
lenging, if the operator determinant ∆0 singular and the coefficient matrices are of larger dimen-
sion. Therefore, a different approach is required to study the generalized antieigenvalue theory
for singular LTEP, and it can be considered as future avenue of further research in this area. It is
also anticipated that further research is necessary for deeper understanding on the connections be-
tween generalized antieigenvalue pairs and other concepts in the spectral theory of LTEP such as
eigenvalues and singular values. Moreover, exploring new applications of generalized antieigen-
value pairs of LTEP can contribute to the advancements of diverse scientific domains.
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